12 resultados para Artificial Organs, Ventricular Assist Device, Centrifugal Pump, Computation Fluid Dynamics

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A successful and useful treatment for end-stage heart failure is Left ventricular assist device (LVAD). An important part - a hydrodynamically suspended impeller exposed to corrosive conditions, required to sealed hermetically into micro packages. Laser beam welded (LBW) Ti6Al4V alloy has been adopted in anti-corrosion micro packages for the impeller of a (LVAD). Thin and narrow welds were required for such medical equipment. Pulsed Nd:YAG welding was successfully adopted as sealing method for the impeller. ©2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) continues to be one of the top causes of mortality in the world. World Heart Organization (WHO) reported that in 2004, CVD contributed to almost 30% of death from estimated worldwide death figures of 58 million[1]. Heart failure treatment varies from lifestyle adjustment to heart transplantation; its aims are to reduce HF symptoms, prolong patient survival and minimize risk [2]. One alternative available in the market for HF treatment is Left Ventricular Assist Device (LVAD). Chronic Intermittent Mechanical Support (CIMS) device is a novel (LVAD) heart failure treatment using counterpulsation similar to Intra Aortic Balloon Pumps (IABP). However, the implantation site of the CIMS balloon is in the ascending aorta just distal to aortic valve contrasted with IABP in the descending aorta. Counterpulsation coupled with implantation close to the aortic valve enables comparable flow augmentation with reduced balloon volume. Two prototypes of the CIMS balloon were constructed using rapid prototyping: the straight-body model is a cylindrical tube with a silicone membrane lining with zero expansive compliance. The compliant-body model had a bulging structure that allowed the membrane to expand under native systolic pressure increasing the device’s static compliance to 1.5 mL/mmHg. This study examined the effect of device compliance and vascular compliance on counterpulsating flow augmentation. Both prototypes were tested on a two-element Windkessel model human mock circulatory loop (MCL). The devices were placed just distal to aortic valve and left coronary artery. The MCL mimicked HF with cardiac output of 3 L/min, left ventricular pressure of 85/15 mmHg, aortic pressure of 70/50 mmHg and left coronary artery flow rate of 66 mL/min. The mean arterial pressure (MAP) was calculated to be 57 mmHg. Arterial compliance was set to be1.25 mL/mmHg and 2.5 mL/mmHg. Inflation of the balloon was triggered at the dicrotic notch while deflation was at minimum aortic pressure prior to systole. Important haemodynamics parameters such as left ventricular pressure (LVP), aortic pressure (AoP), cardiac output (CO), left coronary artery flowrate (QcorMean), and dP (Peak aortic diastolic augmentation pressure – AoPmax ) were simultaneously recorded for both non-assisted mode and assisted mode. ANOVA was used to analyse the effect of both factors (balloon and arterial compliance) to flow augmentation. The results showed that for cardiac output and left coronary artery flowrate, there were significant difference between balloon and arterial compliance at p < 0.001. Cardiac output recorded maximum output at 18% for compliant body and stiff arterial compliance. Left coronary artery flowrate also recorded around 20% increase due to compliant body and stiffer arterial compliance. Resistance to blood ejection recorded highest difference for combination of straight body and stiffer arterial compliance. From these results it is clear that both balloon and arterial compliance are statistically significant factors for flow augmentation on peripheral artery and reduction of resistance. Although the result for resistance reduction was different from flow augmentation, these results serves as an important aspect which will influence the future design of the CIMS balloon and its control strategy. References: 1. Mathers C, Boerma T, Fat DM. The Global Burden of disease:2004 update. Geneva: World Heatlh Organization; 2008. 2. Jessup M, Brozena S. Heart Failure. N Engl J Med 2003;348:2007-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60° included out-lean (conical configuration). Permanent magnets replace the electromagnet drive to allow easier characterization. The performance characteristics tested were the axial force of attraction between the stator and rotor at angles of rotational alignment, Ø, and the corresponding torque at those angles. The drive components were tested for various magnetic cone angles, ?. The test was repeated for three backing conditions: (i) non-backed; (ii) steel-cupped; and (iii) steel plate back-iron, performed on an Instron tensile testing machine. Experimental results were expanded upon through finite element and boundary element analysis (BEM). The force/torque characteristics were maximal for a 12-magnet configuration at 0° cone angle with steel-back iron (axial force = 60 N, torque = 0.375 Nm). BEM showed how introducing a cone angle increases the radial restoring force threefold while not compromising axial bearing force. Magnets in the drive system may be orientated not only to provide adequate coupling to drive the CRBP, but to provide significant axial and radial bearing forces capable of withstanding over 100 m/s2 shock excitation on the impeller. Although the 12 magnet 0° (?) configuration yielded the greatest force/torque characteristic, this was seen as potentially unattractive as this magnetic cone angle yielded poor radial restoring force characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for  ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic  interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli  culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the work carried out on the development of a novel digit actuator system with tactile perception feedback to a user and demonstrated as a master-slave system. For the tactile surface of the digit, contrasting sensor elements of resistive strain gauges and optical fibre Bragg grating sensors were evaluated. A distributive tactile sensing system consisting of optimised neural networking schemes was developed, resulting in taxonomy of artificial touch. The device is suitable for use in minimal invasive surgical (MIS) procedures as a steerable tip and a digit constructed wholly from polymers makes it suitable for use in Magnetic Resonance Imaging (MRI) environments enabling active monitoring of the patient during a procedure. To provide a realistic template of the work the research responded to the needs of two contrasting procedures: palpation of the prostate and endotracheal intubation in anaesthesia where the application of touch sense can significantly assist navigation. The performance of the approach was demonstrated with an experimental digit constructed for use in the laboratory in phantom trials. The phantom unit was developed to resemble facets of the clinical applications and digit system is able to evaluate reactive force distributions acting over the surface of the digit as well as different descriptions of contact and motion relative to the surface of the lumen. Completing control of the digit is via an instrumented glove, such that the digit actuates in sympathy with finger gesture and tactile information feedback is achieved by a combination of the tactile and visual means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a very large number of adults, tasks such as reading. understanding, and using everyday items are a challenge. Although many community-based organizations offer resources and support for adults with limited literacy skills. current programs have difficulty reaching and retaining those that would benefit most. In this paper we present the findings of an exploratory study aimed at investigating how a technological solution that addresses these challenges is received and adopted by adult learners. For this, we have developed a mobile application to support literacy programs and to assist low-literacy adults in today's information-centric society. ALEX© (Adult Literacy support application for Experiential learning) is a mobile language assistant that is designed to be used both in the classroom and in daily life in order to help low-literacy adults become increasingly literate and independent. Through a long-term study with adult learners we show that such a solution complements literacy programs by increasing users' motivation and interest in learning, and raising their confidence levels both in their education pursuits and in facing the challenges of their daily lives.